

Cryptanalysis of MD5 & SHA-1

Marc Stevens marc.stevens@cwi.nl

CWI Amsterdam

Overview

- Introduction
 - Cryptographic hash functions
 - Main applications
 - Public hash standards
 - Design of MD5 & SHA-1
- Advances in cryptanalysis of MD5
- Real-world impact of collision attacks
- Recent advances in cryptanalysis of SHA-1

Introduction Cryptographic hash functions

- Deterministic algorithm
 - In: message of arbitrary bit-length
 - Out: digital fingerprint of fixed short bit-length
- Security requirement: collision resistance
 - It should be 'hard' to find collisions: $a \neq b$ such that H(a) = H(b)
- 'Odd' cryptographic primitive
 - No key
 - No randomness
 - No mathematical definition of collision resistance (for fixed non-keyed hash functions)
 Informal definition: there are no known attacks better than brute-force

Introduction Main applications

- Digital signatures: hash-then-sign
 - Process message to hash: h=H(m)
 - Sign hash with RSA: s=RSA(sk,h)
 - If H(a)=H(b) then Sign(sk,a)=Sign(sk,b)
 - Requires collision resistant hash function
- Digital certificates
 - Usage: proof of identity in https://
 - Hierarchy: tree
 - End-node: https server 🚤
 - Parent-node: Certification Authority
 - Node certificate signed by parent

Introduction Public hash standards

- MD5 ('91, Rivest, 128-bit hash)
 - broken: 2¹⁶ compressions [SSA+09] (~20 ms on 1 core)
 - Still used
- SHA-1 ('95, NIST, 160-bit hash)
 - broken: 2⁶¹ compressions [MRR07] [S12] (~16,000 years on 1 core)
 - Still widely used
- SHA-2 ('01, NIST, 224/256/384/512-bit hash)
 - secure: attacks up to 41-step SHA-256 & 46-step SHA-512 (of 64/80 steps)
- SHA-3 ('12, NIST, 224/256/384/512-bit hash) new!
 - secure: attacks up to 8 rounds (of 12 up to 24 rounds)

Introduction Design of MD5 & SHA-1

Overview

- Introduction
- Advances in cryptanalysis of MD5
 - First MD5 collision
 - MD5 chosen-prefix collision attack
 - Update on MD5 collision attacks
- Real-world impact of collision attacks
- Recent advances in cryptanalysis of SHA-1

Advances in cryptanalysis of MD5 First MD5 collision

2004 [WY05]

- Breakthrough cryptanalysis `by hand'
- First MD5 collision found: $m \neq m'$ with MD5(m) = MD5(m')
- 2⁴⁰ calls to MD5 (~64 hours on 1 core)
- Identical-prefix collision attack
- Skepticism from industry: "no meaningful differences"

Advances in cryptanalysis of MD5 MD5 chosen-prefix collision attack

2006 [SLdW07]

- Algorithmic cryptanalysis
- Chosen-prefix collision attack
 - Create collision from any two messages by appending suffix
 - Allows very meaningful differences
- 2⁴⁹ MD5-calls (~1400 days on 1 core)
- Skepticism from industry: "attack complexity too high", "no convincing scenario"

Advances in cryptanalysis of MD5 Update on MD5 collision attacks

2009 [SSA+09]

- Speed improvements
- Identical-prefix collision attack
 - New more efficient message differences
 - 2¹⁶ MD5-calls (~20 ms on 1 core)
- Chosen-prefix collision attack
 - More powerful and flexible birthday search
 - Extended family of differential paths
 - 2^{39} MD5-calls (~32 hours on 1 core)
- Convincing real-world example...

Overview

- Introduction
- Advances in cryptanalysis of MD5
- Real-world impact of collision attacks
 - Rogue Certification Authority
 - Overview colliding certificates
 - Abuse scenario
 - Impact
- Recent advances in cryptanalysis of SHA-1

Real-world impact of collision attacks Rogue Certification Authority

- Colliding certificates with privilege escalation [SSA+09]
 - Legitimate secure website:
 - e.g., `https://marc-stevens.nl'
 - Illegitimate *sub-C.A.*:
 - ``MD5 Collisions, Inc."
 - ``MD5 Collisions, Inc." trusted by IE9, FireFox, Chrome, ...
 - Successful proof-of-concept construction
 to counter skepticism of real-world danger of MD5 collision attacks

Legitimate website certificate

Rogue CA certificate

chosenprefixes:

same length (500 bytes)

different contents

collision bits

identical suffixes

identical signatures Serial number 65 Commercial CA Equifax Validity period from 31 jul'04 0:00:00 to 2 sep'04 0:00:00 MD5 Collisions Inc. Sub-CA (http://www.phreedom.org name /md5)1024-bit RSA BAA659C92C28 public key D62AB0F8E... Extensions "CA = true" 33000000275E Comment

39E089610...

Identity verified by Equifax

Real-world impact of collision attacks Abuse scenario

- Very powerful abuse scenario
 - Impersonating *all* secure websites
 - Requires subverting communications
 - Local network access sufficient
 - Man-in-the-middle attack

- Harvest sensitive private information:
 E.g., usernames, passwords, address, ...
- Alter queries and responses: E.g., financial transactions: account number, amount
- Demonstrated live at annual Crypto conference

Real-world impact of collision attacks Impact

Impact

- Collision attacks proven to be very dangerous in practice, not just theoretical
- Our goal: C.A. abandoned MD5
- Led to more secure standards for C.A. industry
 - No MD5
 - No SHA-1 after 2012
 - Insert at least N bits of randomness in certificates
 - (RSA public key: at least 2048 bits)
- New precedent for security researchers
 - Possible legal risk to be silenced
 - Using EFF: Microsoft & Mozilla signed Non-Disclosure Agreement
 - Responsible disclosure through Microsoft & Mozilla

Overview

- Introduction
- Advances in cryptanalysis of MD5
- Real-world impact of collision attacks
- Recent advances in cryptanalysis of SHA-1
 - Historic overview
 - Basic attack strategy
 - Novel cryptanalysis
 - New attacks

Recent advances in cryptanalysis of SHA-1 Historic overview

2005	First SHA-1 collision attack [WYY05a]			
	Identical-prefix collision attack: 269 calls (4,000,000 years on 1 core			
2005	Claim: 2 ⁶³ calls [WYY05b]: unpublished			
2007	Claim: 2 ⁶¹ calls [MRR07] : unpublished			
2009	Claim: 2 ⁵² calls [MHP09] : withdrawn			
2011	[PCTH11]: first attack is best <i>published</i> attack: 2 ⁶⁹ calls			
	No actual collision found yet			

Recent advances in cryptanalysis of SHA-1 Basic attack strategy

Recent advances in cryptanalysis of SHA-1 Basic attack strategy

- Linear combination of local collisions
- E.g., last 60 steps
- Most significant factor in total attack complexity
- Study local collision independently
 - Combine probabilities
 - Combine conditions
- Known dependencies
 - Heuristic corrections
 - Sub-optimal solutions

Recent advances in cryptanalysis of SHA-1 Novel cryptanalysis

Novel approach [S12]

- Enumerate *all* differential paths
 - With prescribed disturbances
 - Sum exact probabilities
- Automatically captures heuristic techniques & more
 - Carries
 - Compression technique
 - Dependencies
- Exact & exhaustive
 - \Rightarrow leads to optimal solution
- Main problems:
 - Exponential # Δm vectors
 - Exponential # paths

Recent advances in cryptanalysis of SHA-1 Novel cryptanalysis

- Problem: Exponential # Δm vectors
 - Solution: message vector classes
 - Vectors in same class ⇔ same 'characteristics'
 - Only process one vector of each class
 - Deals with major redundancies
- Problem: *Exponential* # differential paths
 - Solution: **differential path reduction**
 - Removes 'independent inner parts'
 - Many paths lead to same reduced path
 - Compute cumulative probabilities removed parts
- Efficient algorithmic solution
 - Iterative process: 1 step, 2 steps, ..., 60 steps
 - Simultaneously determines:
 - Reduced paths
 - Cumulative probabilities
 - Message vector classes

$$\sum_{P \in \mathcal{P}} \Pr[P] = \sum_{P \in \mathcal{P}} \Pr[R] \cdot \Pr[S] = \sum_{R \in \mathcal{R}} \Pr[R] \cdot \left(\sum_{S \in \mathcal{S}_R} \Pr[S]\right) = \sum_{R \in \mathcal{R}} \Pr[R] \cdot p_R$$
21/24

Recent advances in cryptanalysis of SHA-1 New attacks

New attacks [S12] based on novel approach:

- New near-collision attack
 - 2^{57.5} compressions (~1,400 years on 1 core)
 - First open-source SHA-1 attack
 - Optimal L-part
 - Sub-optimal NL-part & 50+ bits of freedom left
 ⇒ room for improvement
- New identical-prefix collision attack
 - Two near-collisions: >7 times harder
 - 2⁶¹ compressions (~16,000 years on 1 core)
- New chosen-prefix collision attack
 - Birthday search + near-collision
 - 2^{77.1} compressions (~2,000,000,000 years on 1 core)

Conclusion

- Real-world security based on security of hash functions
- Need to understand security of widely used standards
 - Attacks can only get better, not worse
- Yet industry responds slowly to academic results
 - MD5 should be abandoned by now... is it?
 - SHA-1 is currently widely used... while broken for 7 years
- Is the industry waiting till the first SHA-1 collisions?
 - Might not come from Academia
 - Abandoning SHA-1 takes time, see MD5. Why wait?

Thank you for your attention

Questions?

References

- [MRR07] *Update on SHA-1*, F. Mendel, C. Rechberger, V. Rijmen, rump session CRYPTO 2007. (*unpublished*)
- [MHP09] *Differential path for SHA-1 with complexity O*(2⁵²), C. McDonald, P. Hawkes, J. Pieprzyk, Cryptology ePrint Archive, Report 2009/259. (*withdrawn*)
- [PCTH11] Security considerations for the SHA-0 and SHA-1 message digest algorithms, T. Polk, L. Chen, S. Turner, P. Hoffman, RFC 6194, 2011.
- [SLdW07] *Chosen-prefix collisions and colliding X.509 certificates for different identities,* M. Stevens, A.K. Lenstra, B. de Weger, EUROCRYPT 2007, LNCS Vol. 4515, pp. 1-22, Springer, 2007.
- [SSA+09] *Short chosen-prefix collisions for MD5 and the creation of a rogue CA certificate,* M. Stevens, A. Sotirov, J. Appelbaum, A.K. Lenstra, D. Molnar, D.A. Osvik, B. de Weger, CRYPTO 2009, LNCS Vol. 5677, pp. 55-69, Springer, 2009.
- [S12] Attacks on hash functions and applications, Marc Stevens, PhD thesis, Leiden University. (See also the open-source project at: http://code.google.com/p/hashclash/)
- [WY04] How to break MD5 and other hash functions, X. Wang, H. Yu, EUROCRYPT 2005, LNCS Vol. 3494, pp. 19-35, Springer, 2005.
- [WYY05a] Finding collisions in the full SHA-1, X. Wang, Y.L. Yin, H. Yu, CRYPTO 2005, LNCS Vol. 3621, pp. 17-36, Springer, 2005.
- [WYY05b] Cryptanalysis on SHA-1, X. Wang, A.C. Yao, F. Yao, presentation, NIST Cryptographic Hash Workshop, 2005. (unpublished)